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ABSTRACT
Large Language Model (LLM) assistants, such as ChatGPT, have
emerged as potential alternatives to search methods for helping
users navigate complex, feature-rich software. LLMs use vast train-
ing data from domain-specific texts, software manuals, and code
repositories to mimic human-like interactions, offering tailored as-
sistance, including step-by-step instructions. In this work, we inves-
tigated LLM-generated software guidance through a within-subject
experiment with 16 participants and follow-up interviews. We com-
pared a baseline LLM assistant with an LLM optimized for particu-
lar software contexts, SoftAIBot, which also offered guidelines for
constructing appropriate prompts. We assessed task completion,
perceived accuracy, relevance, and trust. Surprisingly, although
SoftAIBot outperformed the baseline LLM, our results revealed no
significant difference in LLM usage and user perceptions with or
without prompt guidelines and the integration of domain context.
Most users struggled to understand how the prompt’s text related
to the LLM’s responses and often followed the LLM’s suggestions
verbatim, even if they were incorrect. This resulted in difficulties
when using the LLM’s advice for software tasks, leading to low task
completion rates. Our detailed analysis also revealed that users re-
mained unaware of inaccuracies in the LLM’s responses, indicating
a gap between their lack of software expertise and their ability to
evaluate the LLM’s assistance. With the growing push for designing
domain-specific LLM assistants, we emphasize the importance of
incorporating explainable, context-aware cues into LLMs to help
users understand prompt-based interactions, identify biases, and
maximize the utility of LLM assistants.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in HCI.
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1 INTRODUCTION
Learning to use feature-rich software applications for tasks such
as advanced word processing, data analysis, image manipulation,
and video editing can be challenging for end-users. Users currently
turn to various software help resources to learn and seek help for
such software tasks. For example, they usually begin by querying
online search engines using keywords to locate specific resources,
such as video and text-based tutorials, forums posts, and blogs and
articles [3, 22, 35, 36]. However, online software-help seeking is
a complex endeavour, demanding precise queries to pinpoint the
most pertinent information that can be directly applied within the
application [18, 22].

The recent emergence of Generative AI and pre-trained Large
Language Model (LLM)-based assistants like ChatGPT [2, 8] offers
a novel approach to support end-users’ software help-seeking by
leveraging these assistant’s advanced natural language understand-
ing [52]. For example, LLMs provide the potential for step-by-step
instructions and explanations tailored to specific task needs, saving
users time and effort searching through online resources. In the
past two years, LLMs have demonstrated promising capabilities
in assisting users in various domains, including tasks related to
programming and software development [50], language generation
[2], and question answering [2]. However, the effectiveness of LLM-
based assistance and how end-users employ LLMs to seek help for
feature-rich applications remain important open questions. Fur-
thermore, there have been calls [29] for a better understanding of
the dynamics of user interaction across diverse AI usage scenarios,
aiming to avoid false assumptions.

In this work, we investigate how software users make use of
LLMs with prompt-based interactions for seeking help for feature-
rich applications. In particular, we investigate the effectiveness
of recently emerging prompt guidelines [42, 44] offered by Ope-
nAI, Microsoft, and others, which, when prepended to the user
prompts, can potentially enhance LLM output to provide desired
assistance [52]. Furthermore, we also consider the impact of inte-
grating additional domain context, such as software documentation,
into LLMs to improve the precision of the LLM output. For exam-
ple, such techniques are currently being explored in in-application
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LLM assistants, such as Copilot in Microsoft 365 applications [43],
Firefly in Adobe applications [1], etc.). For this investigation, we
developed SoftAIBot, our implementation of a state-of-the-art LLM
assistant that integrates prompt guidelines and domain context,
and compared it with a Baseline ChatGPT Plus LLM assistant. By
analyzing users’ interactions, behaviors, and challenges when using
these state-of-the-art LLMs for software help-seeking, we aim to
help end users harness the full potential of LLM-based assistants
for feature-rich software [31]. The research questions guiding this
exploration were:

• RQ1: How do end users make use of prompt-based interac-
tions when finding software help ?

• RQ2: To what extent can SoftAIBot generate accurate and
relevant software help for end-users of feature-rich applica-
tions?

• RQ3: How do end users’ mental models of LLMs influence
their use of LLM-generated software help?

In this paper, we report on the results from a controlled study
and follow-up interviews that illustrate how end-users make use
of prompt-based interactions when using LLM-based assistance in
concert with tasks that involve visual interactions (e.g., Microsoft
PowerPoint) and advanced data analysis/visualizations (e.g., Mi-
crosoft Excel). We ran a within-subject experiment with 16 par-
ticipants from varied backgrounds without expertise in Machine
Learning (ML) or Natural Processing Language (NLP). We hypoth-
esized that our implementation of SoftAIBot with ChatGPT Plus
(GPT-4) as the underlying LLM, state-of-the-art prompt guidelines,
and integrated domain context will generate accurate and relevant
assistance for users’ prompts and help users finish their software
tasks. However, our findings showed that even though SoftAIBot
performed better than BaseLine in generating more accurate and
relevant LLM output, users could not recognize these differences
and struggled in mapping the LLM instructions to the software
application, leading to poor task completion. The impact of the
prompt text on the quality of the LLM output was not clear to users,
and they rather followed LLMs’ suggestions blindly, even when
the output was inaccurate. Lacking an accurate mental model of
LLMs, users tended to over-trust the LLM assistance without much
contemplation.

The main contributions of this research are in providing em-
pirical insights that: (1) demonstrate how software users employ
new-generation LLM assistants to seek software help, both with
and without prompt guidelines as well as integrated software con-
text; (2) illustrate the challenges that software users experience
with prompt-based interaction (e.g., crafting prompts, comprehend-
ing how prompts bias LLM output, mapping LLM-suggested steps
to software, overtrusting output correctness); (3) identify gaps in
users’ mental models as they try to seek and apply assistance from
LLMs to software tasks, which affect both their use of LLMs and per-
ception of software features, regardless of implicit enhancements in
the underlying model or explicit prompt guidelines (SoftAIBot). We
discuss the implications of these findings for designing and imple-
menting LLM help tailored to feature-rich applications, the need to
incorporate transparent and responsible LLM assistants, and ways
to bridge the disparity between mental models and LLM interfaces,
ultimately helping end-users form accurate mental models of LLMs.

2 RELATEDWORK
This research drew upon insights from prior work on how users
learn and seek help for feature-rich software, the emergence of
LLMs for task-based assistance, and the use of prompt-based inter-
actions.

2.1 Software Help-seeking evolution
HCI research has a rich history of investigating the challenges
that users experience when learning and seeking help for complex
feature-rich applications [11, 18, 22, 35]. Help-seeking resources
and approaches have evolved over the years: from formal documen-
tation and manuals [36, 39] to the use of videos [23, 25], interactive
tutorials [35], Google Search, Q&A or FAQ sites, blogs, dedicated
forums [22] and even contextual help systems embedded within
applications [7, 11, 17, 19, 24].

However, studies have shown that although users have increased
access to help information, they often get lost in search results
and forum posts and still face difficulty in recognizing effective
and relevant [22, 34] resources for completing their software tasks.
Users also face numerous issues with articulating search queries
using precise keywords [16, 18, 22], often termed as vocabulary
problem [16]. Another related issue that users face is using the
located help in coordination with the application and going back
and forth between the two to accomplish their software tasks [22].
Past studies have shown that users tend to find step-by-step guid-
ance within the context of feature-rich applications useful and
trustworthy [11, 21, 22]. There have been constant innovations in
devising help resources in the form of in-context help and video
tutorials [17, 25, 35]. However, recent developments in Generative
AI have opened a new outlet of help-seeking for users through
LLM-based assistance, which is much more forgiving in letting
users describe their queries using natural language [41, 52]. These
assistants tend to provide more specific and in-context assistance
[52] to users, unlike traditional resources that may be scattered and
require precise queries for retrieval. While there is a rich history
of work supporting software learnability and easing help-seeking
processes [11, 14, 17, 25], it is unclear whether users’ learning
approaches and strategies apply to LLM-based assistants. We ex-
tend this prior work by examining how novices employ LLM assis-
tants for software help-seeking and the types of challenges they
experience.

2.2 LLM use for Task-Based Assistance
The emergence of powerful LLM assistants, such as ChatGPT, has
significantly impacted task-based assistance for a range of domains,
including programming, text generation, and text summarization
[47]. Recent studies have attempted to understand the use of LLM
assistants for programming and software development-related help-
seeking [5, 51]. For example, Xu, Vasilescu, & Neubig (2022) [51]
investigated the use of LLMs for programming-related tasks and
found that users struggle to generate assistance especially for
complex queries as users struggled in formulating specific code-
related input queries. Another study [48] highlighted that users
mostly rely on trial and error while debugging their code using
LLM assistance and often do not feel confident about applying the
output.



Why and When LLM-Based Assistants Can Go Wrong IUI ’24, March 18–21, 2024, Greenville, SC, USA

Recent interest in LLMs has inspired initiatives [1, 43] to utilize
their capabilities for assisting users with software tasks as well
[1, 43]. For example, some experimental work is being explored by
integrating LLMs directly into feature-rich applications, such as
Copilot in Microsoft 365 [43] and Firefly in Adobe [1]. This process
has shown that developers can face new challenges in ensuring
accurate and effective use of this new avenue of conversational
UX experience [29, 52]. As many of these interfaces are still at a
nascent stage, it is unclear how this current practice (i.e., integrat-
ing the context of these feature-rich applications) can help novice
end-users in seeking accurate and relevant assistance from LLMs.
Furthermore, to harness the full potential of these LLM assistants
for seeking help for their software tasks, we need more insights on
where and how users struggle with these LLMs [31]. Our study con-
tributes new knowledge on how non-AI expert end-users employ
LLMs’ generated software guidance assistance in accomplishing
tasks for feature-rich applications by comparing our own imple-
mented, SoftAIBot, an LLM optimized for particular domain context
(e.g., software documentation) with the Baseline ChatGPT.

2.3 Prompt-based interactions
To leverage the potential of LLMs, a lot of the focus in HCI and AI
research is turning to prompt-based interactions as users generally
have to provide input or queries in the form of prompts that are
then processed or responded to by a conversational AI system
[52]. Recent studies on the usability of prompt-based interactions
[5, 41, 51] reveal that prompts have a significant impact on pre-
trained language models’ ability to produce desired outputs, even
though the prompts themselves are simple textual instructions for
the task at hand [52]. For example, Advait et. al’s (2022) [41] study
on the use of LLM-assisted tools for programming tasks revealed
that the crucial concern is crafting effective prompts that elevate the
probability of an LLM model to generate efficient code. Thus, the
big challenge for end-users, especially novices and non-AI experts,
is to define the appropriate prompts and learn prompting strategies
to get the desired assistance from these LLMs.

Unlike traditional help-seeking mediums that rely on keyword
matching, prompt-based interactions within LLMs offer human-
like language capabilities [29], which is unique, but can also be
unreliable. This unreliability comes from the biases (e.g., hallucinat-
ing and non-deterministic output) inherent within prompt-based
interactions of LLMs. Considering LLMs are a tremendous leap
from traditional help-seeking mediums that most users are famil-
iar with, there have been calls to investigate users’ mental models
as they interact with LLMs [29]. This becomes necessary when
seeking assistance for feature-rich software tasks, where there is
an interplay between the mental model of LLM vs the software
application [22, 29]. Recent studies have focused on understanding
users’ prompting strategies and proposing a catalogue of prompting
guidelines [42, 44, 50] for allowing users to craft better prompts
and seek desired LLM assistance. However, the use of these prompt
guidelines in practice and their effectiveness remains unclear. Our
study complements the existing research by observing users with
prompt-based interactions and assessing the efficacy of prompt-
based guidelines and integration of domain context in enhancing
LLM assistance for software tasks.

3 METHOD: CONTROLLED EXPERIMENT
AND FOLLOW-UP INTERVIEWS

We conducted a two-part user study with 16 users that consisted
of a controlled experiment and follow-up interviews. Our main
goal in this study was to investigate the effectiveness of two recent
advancements: 1) prepending prompt guidelines to user prompts
to enhance the accuracy of LLM output, as advocated by OpenAI,
Microsoft and others to enhance Generative AI tools [42, 44]; and, 2)
directly integrating domain context (e.g., software documentation)
into LLM assistants (e.g., as demonstrated in Copilot in Microsoft
365 applications [43] and Firefly in Adobe applications [1], etc.) to
enhance the relevance and accuracy of LLM output for software-
related tasks. For our investigation, we implemented both of these
advancements in a new GPT-4-based assistant, which we call Soft-
AIBot, that offers in-context prompt guidelines (See Figure 1) and
enhances the LLM output by making it specific to the feature-rich
application (See Figure 1.c). For comparison, we also implemented
Baseline ChatGPT based on the pre-trained state-of-the-art LLM
assistants, ChatGPT. (SoftAIBot is explained in more detail below.)
The prompt suggestions were not included in the Baseline ChatGPT
because it was a control condition for the experiment.

Based on our research questions, we derived the following hy-
potheses for users seeking software help:

• H1: Users will perceive SoftAIBot as being more accurate
than Baseline ChatGPT.

• H2: Users will perceive SoftAIBot as being more relevant
than Baseline ChatGPT.

• H3: Users will trust SoftAIBot more than Baseline ChatGPT.
• H4: Users will find the output provided by SoftAIBot to be
easier to apply in the software application than Baseline
ChatGPT.

3.1 Participants
We recruited 16 participants (9F|7M) for our study, focusing on non-
AI expert users who had little to no prior experience or knowledge
of ML or NLP. Our participants came from different backgrounds
(CS, Engineering, Business, Arts) and professions (administrative
services, business analytics, information designers, client services,
students, and researchers). Participants were familiar with LLM-
based assistant, ChatGPT (10/16), and a range of traditional chatbots
(12/16) such as Siri, and Google Assistant (12/14). They had used
ChatGPT before for text generation, text summarization, and pro-
gramming tasks, but none of them used it for software tasks used in
the study before. About half of the participants (7/16) had frequently
used PowerPoint and Excel applications and the remaining were
occasional users. Our participants covered a range of age groups:
18-24 (25%), 25-34 (62%), 35-44 (13%) and had different levels of ed-
ucation (2 Diploma, 4 Bachelor’s, 5 Master’s, 5 PhD). We recruited
participants mainly from our university’s mailing lists and found
additional participants through snowball sampling.

3.2 Design and Implementation of SoftAIBot
and Baseline ChatGPT

In this section, we describe the design and system implementation
of our two interventions.
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Figure 1: SoftAIBot integrates domain context via documentation and offers prompt guidelines to construct better prompts: (a)
allows users to type in the prompt text and submit it; (b) generates prompt suggestions in-response to a user’s text (in this
case, also shows a sample transformed query that users can directly use); (c) formats the response as step-by-step instructions
optimized for particular software contexts, in this case PowerPoint. To see the contrast in LLM response, please see Baseline in
Figure 2.

3.2.1 SoftAIBot Intervention (GPT-4with Prompt Guidelines
and Software Documentation) . SoftAIBot LLM intervention
suggests in-context prompt guidelines for constructing prompts
while interacting with GPT-4 as well as generates guidance for
particular software contexts.

Automatic Prompt Guidelines: The SoftAIBot UI interface
(See Figure 1) lays out the various user interface components and
receives the user’s prompt. Next, this user’s prompt gets transmitted
to our custom API developed in Python connected to GPT-4 for
generating prompt suggestions in-context to user’s prompt and
a sample transformed query based on suggested guidelines that
users can directly use. We used the prompt guidelines provided
by OpenAI, Microsoft and others [42, 44]. The generated prompt
suggestions are displayed as an overlay (as shown in Figure 1.b) on
the top left of the SoftAIBot interface via a Chrome Extension which
triggers with the click of “send” button component. These prompt
suggestions appear after every prompt-based interaction initiated
by the user. To allow users freedom and control in accessing the
prompt suggestions, we included theminimize,maximize, and close
options for either using the suggestion or simply closing it anytime
during the interaction.

Implicit Domain Context Integration:To optimize SoftAI-
Bot for a particular software context (as shown in Figure 1.c), we
leveraged GPT-4 augmented with corresponding software docu-
mentation. When a user submits the prompt, the relevant textual
information or pertinent excerpts are extracted from software doc-
umentation by using Facebook AI Similarity Search (FAISS) index

and vector search. Our custom API send this software context in-
formation along with user’s original prompt, together as a payload,
to OpenAI’s GPT-4 8k to generate better tailored responses with
reduced hallucinations. This process of using LLM with extracted
relevant text is known as Retrieval Augmented Generation (RAG)
Vector search [26]. We used open source model BGE-smal-en [32]
for producing chunks of the software documentation and trans-
forming it to dense contextual vectors with 384 dimensions. For
the search approach used in RAG, we tried different approaches
such as text chunking, and embedding models. The chunk size of
512 and BGE-smal-en approach provided us better context and fast
retrieval. Next, we searched this vector against the FAISS index to
retrieve the most similar text vectors. Based on the indices of these
similar vectors, we fetch the corresponding original text data from
software documentation.We fed this extracted text from software
documentation, along with the user’s query, as a prompt to GPT-4
(See Appendix B for details).

3.2.2 Baseline ChatGPT intervention (ChatGPT plus). Our
Baseline ChatGPT mimics the existing ChatGPT (See Figure 2.a)
plus based on GPT-4, where users can type in their query and LLM
provide assistance to users for variety of tasks through out-of-the
box multi-turn conversations using OpenAI GPT-4 8k API [2, 8].
To maintain the user’s history and conversations when interacting
with the OpenAI GPT-4 API, we designed Python algorithm using
chat completion objects [40] (See Appendix B for details).

To make the LLM UIs consistent for the experiment, we simu-
lated both the interventions using Gradio framework [46], an open
source framework, for developing intuitive web-based UI interfaces,
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Figure 2: Overview of sample user task with PowerPoint application: (a) Users were asked to look up and use instructions from
LLM intervention. In this case, Baseline ChatGPT mimics the existing ChatGPT plus based on GPT-4, where users can type in
their prompt in the textbox and LLM provide assistance to users for variety of tasks; (b) Use LLM assistance to develop shown
project timeline in Microsoft PowerPoint that is visual and animated.

making it easier to gather feedback, showcase results, and enable
end-users to interact with LLMs during the user study.

3.3 Choice of Application and Tasks
To choose tasks and applications, we explored different productivity-
related feature-rich applications (e.g., PowerPoint, Excel, Photoshop,
Teams, etc.) popular among everyday novice users. After our ini-
tial exploration, we selected Microsoft PowerPoint and Excel to
cover a range of tasks involving visual interactions, interactions
involving application of statistical functions or formula and other
visualization related tasks.

To assess the users’ help-seeking approaches and observe any
potential challenges when using LLM assistants for software help,
we selected tasks that would require multiple steps for completion,
and would necessitate multi-stage help and prompts (e.g., help
within different steps needed for task completion). For example,
one of the Excel tasks asked participants to use instructions from
the LLM for analyzing and visualizing the predictive analytics of the
sales values based on income using linear regression. Similarly, one
of the PowerPoint tasks (See Figure 2) asked users use instructions
from the LLM to develop a project timeline in Microsoft PowerPoint
that is visual and animated.

3.4 Study Design and Procedure
We used a within-subject design to minimize the effect of inter-
participant variability. To eliminate order effects, we used a Latin
Square counterbalancing [38] with 2 LLM conditions (total possible

order= 4) to balance the order inwhich taskswere presented. During
the experiment, each participant completed two tasks with each
LLM interventions (4 tasks in total) . The participants performed all
tasks using one feature-rich application, subsequently transitioning
to a second feature-rich application, but the order of the tasks and
associated LLM were randomized.

Each study session began by introducing the participant to the
LLM assistants, and provided some general tips to interact with
the application (e.g., using the prompts). We conducted the study
remotely through Zoom and participants were each given a $15
Amazon gift card in appreciation of their time. Participants were
provided instructions to install our LLM interventions via a Chrome
extension. Next, participants completed a demographic question-
naire on their background and prior experiences with LLM assis-
tants, chatbots and software applications.

We presented each LLM intervention along with software ap-
plication to the participant in a random order, one by one. We
designed the complicated software tasks so that participants would
be able to spend at least 8 minutes for completing each software
task regardless of their familiarity and experience with the soft-
ware application using given LLM intervention. After completing
each of the 4 tasks, participants were asked to fill the post-task
questionnaire hosted on the SurveyMonkey to assess the overall
experience seeking assistance from LLM interventions for software
tasks along with their perceptions of accuracy, relevancy, ease of
use, and trust of the assistance provided by LLM intervention. We
encouraged participants to think aloud [33] throughout the session
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and reminded participants that the study was seeking to understand
how they seek assistance from LLM interventions for their software
tasks rather than their performance or ability to master software
applications or use the LLM.

Lastly, we conducted follow-up interviews to further probe any
difficulties that impacted the use of prompt-based interaction and
LLM assistance for software tasks, and any potential gaps in mental
models about how LLMs work. Each session lasted approximately
one hour and sessions were video and audio-recorded for transcrip-
tion, and the participants were asked to share their screen through
Zoom (only during the usability test).

3.5 Data Collection and Analysis
Throughout the study session, we recorded the participant’s screen
and audio recorded their interview responses. We captured screen
recordings to evaluate two key aspects: how users sought help from
LLM assistants (e.g., formulated their prompts) and how they used
the LLM output to complete the prescribed software tasks in Excel
and Powerpoint.

We used a combination of statistical tests and inductive analysis
approach to make sense of the data captured from the user study.
We ran Pearson’s Chi-square test for independence with nominal
variable “LLM Interventions” (having two levels: SoftAIBot, and
Baseline ChatGPT) and ordinal variable (having three collapsed
levels: Agree, Neutral and Disagree) to quantitatively determine
the significance of the results.

We used an expert-rating approach where the experimenter (in
consultationwith all authors) analyzed the tasks performed by users
in the software application and compared all of our metrics against
the ground truth for all tasks. The ground truth in our context refers
to the correct or optimal sequence of steps for task completion,
the ideal application of software features, and the most relevant
responses from the LLM to user queries. Our metrics included:

(1) Task Completion: To measure the task completion, we evalu-
ated how many of the software task steps (e.g., sequence of
features/ functions) users completed using the LLM help.

(2) Task Accuracy: To measure the participants’ success in apply-
ing LLM assistance to complete the study tasks accurately,
we evaluated how accurately users identified the approach
or functionality (e.g., macro, animation, motion paths, par-
ticular statistical function) from the LLM output and then
applied the help using the corresponding software menu
options and features in the software application.

(3) Accuracy and Relevance of LLM Assistance: We compared
queries and LLM response logs against pre-established ground
truth to assess: a) how accurately the LLM provided instruc-
tions needed for successful software task completion; and,
b) how relevant the LLM response was to the users’ input
prompt.

Finally, to complement our experimental findings, we corrob-
orated the data with participants’ think-aloud verbalizations and
probed into the reasons behind users’ decisions and identify any
potential gaps in their mental models about how LLMs work. We
used an inductive analysis approach [12] and affinity diagrams [12]
along with discussions amongst the research team to categorize

the interview findings and identify key recurring themes. In par-
ticular, our coding approach for the inductive analysis considered
reasons influencing users’ perception of how prompts impact out-
put, recognition of accurate vs. hallucinated output, and difficulties
in applying the LLM assistance to the software task.

4 RESULTS
4.1 Task Completion, Accuracy and Relevance

of LLM Assistance
Expert-rated Accuracy and Relevancy of LLM assistance: As
predicted, we found that the assistance provided by SoftAIBot was
more accurate than Baseline ChatGPT for both PowerPoint (SoftAI-
Bot: Mean=64.4%; Baseline ChatGPT: Mean=37.5%) and Excel (Soft-
AIBot: Mean=65.7%; Baseline ChatGPT: Mean=45%) tasks. These
differences between accuracy scores and LLM interventions were
significant for PowerPoint (t(21.3) =4.0, p=0.0006, two-tailed) and
Excel tasks(t(23.4) =3.7, p=0.0011, two-tailed). Similarly, we found
that the assistance provided by SoftAIBot had higher average rele-
vancy score than Baseline ChatGPT for both PowerPoint (SoftAIBot:
Mean=74.7%; Baseline ChatGPT:Mean=44.4%) and Excel (SoftAIBot:
Mean=78.2%; Baseline ChatGPT: Mean=55.4%) tasks, with signif-
icant differences (PowerPoint: t(24.5) =5.4, p<0.0001, two-tailed;
Excel: t(24.8) =4.8, p<0.0001, two-tailed).

Since the Baseline lacked relevant domain context, it typically
failed to offer relevant and accurate steps available within the soft-
ware (e.g., macros, animations, motion paths, etc.). Instead, it often
provided references to features and functionality that did not ex-
ist. This phenomenon of the LLM providing information that is
somewhat relevant to the user’s query but not accurate to the users’
intent for performing the task has been termed as an hallucination
[4, 6, 29] in the literature (See Figure 4). On the other hand, while
SoftAIBot provided step-by-step instructions on how to implement
the required functionality in the software, it also demonstrated
instances of hallucination. Furthermore, it did not always provide
specific and relevant instructions (for example, where to locate
menu functions within the UI).

In subsequent sections, we shed light on users’ performance
and qualitative perceptions of both LLMs, highlighting various
inconsistencies and misconceptions among users that impacted
their use of prompt-based interactions.

Task Completion and Task Accuracy: None of the partic-
ipants were able to completely finish either of the tasks in Pow-
erpoint or Excel, even though each participant made full use of
both LLM assistants (Baseline ChatGPT and SoftAIbot). On average,
participants completed 35% of the PowerPoint tasks (maximum=
50% and minimum= 0%) with Baseline ChatGPT and 45% of the
tasks (maximum= 60% and minimum= 0%) with SoftAIBot with no
significant difference across the two LLM interventions (t (28.1)=
1.1, p= 0.28, two-tailed). Similarly, participants completed 40% of
the Excel tasks (maximum= 55% and minimum= 0%) with Baseline
ChatGPT and 55% of the tasks (maximum= 75% and minimum=
0%) with SoftAIBot with no significant difference across the two
interventions (t(28.7)=1.9, p=0.07, two-tailed).

Among the portion of the task completed by each participant,
the accuracy scores were low. For the PowerPoint tasks, the average
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Figure 3: Overview of participants’ responses to post-task questionnaire. Pearson Chi-Squared test showed no significant
difference for each metric across both LLM interventions for completing both Excel and PowerPoint tasks. Despite having
low completion rate and low task accuracy, the majority of users perceived that they obtained accurate (a) and relevant (b)
assistance from both LLM interventions. Still, the majority of participants (c) found it difficult to apply LLM assistance and
instructions to the software application to complete their task; (d) Participants overall did not find it difficult to craft prompts;
a few participants did indicate that they struggled to find the correct words for Powerpoint tasks that were more visual and
interactive. Although expert ratings showed that users did not finish the task accurately, most users believed that it was easier
for them to finish the task using both forms of LLM assistance; (f) The majority of users trusted both LLMs - this was surprising
to see because expert ratings showed that both LLMs frequently provided inaccurate assistance.

task accuracy score across all participants was 31.3% using SoftAI-
Bot (maximum= 50%, minimum =0%) and only 17.2% using Baseline
ChatGPT (maximum= 50% and minimum= 0%). Although users
achieved better task accuracy scores with SoftAIBot in comparison
to Baseline, paired-sample t-test showed no significant difference
across both interventions (t(26.6) =1.7, p=0.10, two-tailed), and we
did not observe any order effects. The trend of non-significant
accuracy persisted in Excel tasks as well (t(29.9) =1.9, p=0.06).

Users’ Perceptions of Accuracy and Relevancy of LLM as-
sistance: Even though task completion scores were poor across
both LLM interventions, in the self-report data, surprisingly, the ma-
jority of users perceived assistance from both LLMs to be accurate
(SoftAIBot: 12/16 participants; Baseline ChatGPT: 8/16 participants)
and relevant (SoftAIBot: 13/16 participants; Baseline ChatGPT: 9/16
participants) in completing the PowerPoint tasks. Pearson Chi-
Squared test showed no significant difference in perceived accuracy
(𝜒2 (4, 𝑁 = 28) = 3.05, p =0.55) and relevance of LLM assistance
(𝜒2 (3, 𝑁 = 28) = 1.46, p =0.69). Similarly for Excel tasks, there was
no significant difference in perceived accuracy (𝜒2 (3, 𝑁 = 28) =

3.96, p =0.27) and relevancy (𝜒2 (2, 𝑁 = 28) = 0.29, p =0.86) across
both LLM interventions.

In terms of other self-report data, such as users’ perceptions
of difficulty in applying assistance across both interventions, diffi-
cultly in figuring out correct input prompt, and ease of completing
the task using LLM assistance, we did not observe any statistical
difference across SoftAIbot and Baseline (See Figure 3 for the detail
statistical results and test on remaining metrics). The one exception
was the perception of trust as, interestingly, we observed that most
participants (14/16) trusted SoftAIbot more than the Baseline Chat-
GPT (4/16) for the PowerPoint tasks and this result was significant
(𝜒2 (4, 𝑁 = 32) = 14.40, p =0.006), but for the Excel task, there was
no significant difference in users’ perceptions of trust.

The key takeaways from our experiment were that while the
expert rating showed that SoftAIBot performed better than the
Baseline ChatGPT in producing more accurate results, users could
not recognize the differences in accuracy and relevance among
both LLMs. Furthermore, having more accurate and relevant LLM
output did not impact task completion nor task accuracy across
both software applications. Next, we use our qualitative findings
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Figure 4: LLM Hallucination evidence (P15): In response to P15’s prompt, “I want you to give me instructions on how to animate
a shape that rotates from top to lower middle side and then come back up almost like a zigzag.”, Baseline ChatGPT generated
the hallucinated response of Zigzag menu option (highlighted in red) which did not even exist in the software application.

to explain factors that impacted user performance and highlight
some of the key challenges that users experienced in figuring out
appropriate prompts and applying LLM assistance for different
software tasks.

4.2 Inconsistency in Prompt-based Interaction
Prompt guidelines and prompt engineers usually suggest that break-
ing down the task and prompting it as a process for LLM can usu-
ally lead to desired LLM outputs. However, with the exception of 2
participants in our study who followed this approach and were suc-
cessful (See example of Participant P02 in Figure 6), all of the other
participants were inconsistent and varied in how they constructed
prompts, failing to leverage the in-context prompt guidelines.

Constructing Prompts as Search Queries: Most participants
(10/16) started with a generic “how to do the [task]” prompt, such as
(e.g., “how to animate in Microsoft PowerPoint” (P14), “how to do
correlation in Microsoft excel” (P04)). Most users were translating
their mental model from other query-based systems, relying on
similar queries they would issue on Google: “I think it [LLM] relies
on the keywords that I am giving...at the beginning I just formulated
a very vague question because it’s easier to get started with the vague
question and then I can refine it as I go.” (P08)

Even after users experimented with different phrasings, they
could not understand why the LLMs were producing nearly identi-
cal responses. These participants did not have an accurate mental
model of how LLMs work and did not appear to recognize the im-
pact of the prompt text on the quality of the LLM output: “I think it
works same as a search engine. It has a back end and it takes your
question through tons of data...it tries to give you an answer with
all of that data that it has in the back end..it’s so quick that it goes
through it within nanoseconds..” (P15)

Some participants (4/16), without even interpreting the task,
just copy-pasted the entire task instructions along with some data
sample (e.g., for Excel tasks) in hopes that the LLM would simplify
the task and provide some instructions. However, both of these
approaches were not that successful (as shown in Figure 5), as users
had to ask follow-up questions on figuring out the correct steps.
For example, when P07 (Figure 5) prompted the LLM using the
keywords interpreted from the task, they struggled in getting an
relevant response and went through several rounds of clarifications
with the LLM. Only 2/16 participants who broke down the task and

drafted prompts as a process for SoftAIBot LLM obtained desired
LLM outputs (See example of P02 in Figure 6)

Using Trial and Error Due to the Vocabulary Problem: The
majority of participants (11/16) also struggled in crafting prompts
because they did not know how to express their task intent us-
ing software-specific terminology (often termed as the vocabulary
problem [16]). This was especially prevalent during the PowerPoint
tasks that involved references to different visual and interactive
elements and participants frequently engaged in long trial-and-
error episodes. Participants found it challenging to articulate their
intended actions accurately and frequently blamed themselves: “I
did not know how to describe those visual graphics in PowerPoint...I
said words like flip and move but I am not sure if it was right for
these kind of tasks . It took me a lot of time to try to understand which
menu to select and not being sure if my prompt was ok or not. . . If the
problem was my prompt or my system or the problem was the solu-
tion provided, I was not sure which one of them was making mistake.”
(P05)

Ignoring Prompt Guidelines: Contrary to our hypothesis,
only a handful of participants (5/16) employed the in-context prompt
guidelines provided by SoftAIBot within the context of their queries
and the majority simply ignored them. Participants expressed that
the prompt guidelines were “not necessary” and “not useful” as it
was faster for them to iterate on their own prompts. This behaviour
was similar to the phenomenon commonly referred to as the “active
user paradox” [10]. In fact, about half of the participants (7/16) were
confident that they already possess the knowledge and experience
required for generating prompts: “I would not say it is hurtful to have
it [prompt guidelines] but is not necessary. I knew what to search for.
I do not think prompt guidelines would have helped. . . ” (P06) Some
participants (4/16) noted that they were confident about crafting
their own prompts because the LLMs were able to accept “any in-
put” and generate corresponding output. If needed, they can revisit
the generated response and assess their prompt alignment with
their intended outcome for further improvement: “It is not difficult
to figure out words because it [LLM] was accepting anything I typed.
I can go back and verify whether that is what I need.” (P11)

4.3 User Perception of LLM Assistance
Some of the surprising results from our experiment were that users
did not recognize the differences in accuracy and relevance between
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Figure 5: Unsuccessful Prompting by using keyword-based approach with Baseline ChatGPT: (a) P07 prompted the LLM using
the keywords interpreted from the task, and struggled in getting an relevant response and went through several rounds of
clarifications with the LLM; (b) Eventually, user could not even get started and failed to perform the task on the software
application (P07).

the two LLMs nor were they able to leverage the assistance to
complete the software tasks accurately. Below, we discuss some
factors that shaped users’ perceptions and use of both LLMs.

LLMs’ Ability toGenerateResponseCreated an Impression
of Credibility: Most participants (13/16) perceived that both LLMs
produced relevant responses because in contrast to systems like Siri
and Google, which do not always provide response for every user’s
query, both LLM consistently generated a reasonable response
matching the user’s prompt. Thus, most participants formed an
impression that the LLM outputs were credible: “... it [LLM] gave me
what was relevant to my query...like some steps to find those options.
This bot [LLM] was more detailed even than Siri. When you ask Siri,
it’s not giving what exactly I am looking for and keeps on giving me
some different options...which is unnecessary about the topic. But in
this one [LLM], what you put that’s what you’re getting. So the output
is like, 90 to 95% near to what you just asked...so that made me trust
it.” (P12)

Difficulty in Applying LLM Assistance to the Software
Application: In addition to the tensions in forming an accurate
mental model of both LLMs (as described in Section 4.2), our par-
ticipants who were infrequent users of Powerpoint and Excel also
struggled because they lacked an accurate mental model of these
applications. We observed that participants were quick to blame
themselves for not being able to apply the instructions given by
LLM due to lack of their familiarity with software: “For some reason,
I got what it [LLM] tells me but...maybe it’s giving me correct step,

but I am not able to apply to Excel because I’m not a regular user.
I need to figure out [myself] how to use this formula; where can I
put my formula and how to apply it.” In comparison to SoftAIBot,
users felt that the Baseline ChatGPT generated more generic or
vague responses which users struggled to apply to software tasks.
In fact, 9/16 participants began to doubt the credibility of Baseline
ChatGPT: “Unless you apply the steps, you do not know whether that
[Baseline ChatGPT] works or not.” (P06)

In cases where the LLM output was actually relevant and ac-
curate, our participants still struggled to locate menu options and
apply LLM instructions. They explained that it was due to the lack
of visual cues or guidance that are typically provided in tutorial
videos and other forms of visual help: “...the instructions were here,
but sometimes it gets difficult to use...If I get an image or graphical
help along with screenshots of where to look for particular option, I
could have made it slightly faster.” (P11) Due to this difficulty in
locating and applying LLM assistance, few participants (6/16) came
up with different theories on whether LLM output did not consid-
ered their system version, as commented by P04: “It [LLM] did not
provide instructions for the version of the software I’m using. Some-
times it’s little bit difficult to apply the assistance, sometimes I would
not find the button he [LLM] asked me to look for.” (P04)

When the LLMs hallucinated or produced an incorrect set of
instructions, we observed that more than half of the participants
(10/16) could not map the (wrongly generated) LLM output to the
intended features and menu functions in the application. As a result,
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Figure 6: Example of successful prompting by Participant P02. They started by breaking down the task, beginning with asking
steps to (a) implement shape, followed by (b) animations in PowerPoint task. User prompted SoftAIBot as a step-by-step process
asking steps for each functionality at one time (P02).

they formed an incorrect mental model of the software application’s
user interface. Instead of having awareness of this LLM’s bias of
hallucination, these users felt burdened to make LLM instructions
work: “For someone who is very new to PowerPoint...I could not find
like the stuff, the menu names [ZigZag] that it was mentioning. It
was not there in my application. I am not sure why all the burden of
[finding] came to me.” (P15) Only a few participants (3/16) were able
to recognize that the LLM does not always give factual information.
They compared LLMswith StackOverflow andGoogle searchwhich
they considered to be more credible than LLMs: “ ...if it’s a Stack
Overflow, I would know that it’s just one person’s comment so I have
ways to verify how trustable that instruction is...with Google, I have
that much control over the source of information. But with LLM, I
have no way to verify that at first sight. I have to follow it and, and
decide on my own if it works or not. I prefer to be able to verify the
credibility of a solution before actually going through the steps and
putting more time to it.” (P07)

4.4 Coherent LLM Output Leads to Blind Faith
The presentation of LLM output fosters trust: The most sur-
prising finding from our study was that after receiving an output
from the LLM, most users blindly followed the provided steps with-
out a critical evaluation of the output’s veracity. For example, as
illustrated in Figure 4, even when Baseline ChatGPT produced the
hallucinated response of the Zigzag menu option which did not
even exist in the software application, P15 still demonstrated unwa-
vering trust of this LLM. The boundary between right and wrong
for the participants while seeking LLM assistance, even in cases
where it might yield incorrect results, was blurred as both LLMs
consistently produced output that is coherent and in plain English,
which enhances its perceived credibility. Especially for SoftAIBot,
most participants (14/16) assumed that LLM is correct just because
it generated a well-formatted response in response to their query:
“I trust the system because once I get the match answer from him

[LLM]...makes me feel he [LLM] is helping and he is better than me.”
(P03) Another user who followed SoftAIBot’s step-by-step instruc-
tions for PowerPoint’s visual tasks commented: “I was able to trust
it [SoftAIBot] because I liked the way it gave these steps. SoftAIBot is
more specific and gave me step-by-step sort of directions...it was user
friendly and easy to follow. I could find all the steps that it [SoftAIBot]
was referring to. Because this is what you need when you ask AI for
help. You look for baby steps.” (P14)

5 DISCUSSION
Wehave contributed insights into hownovices employ new-generation
LLM assistants to seek software help, highlighting many of the chal-
lenges that users face while crafting prompts, comprehending how
prompts bias LLM output, and mapping the LLM-suggested steps to
software. Our key findings suggest that even though SoftAIBot out-
performed the Baseline ChatGPT in providing relevant and accurate
software-related assistance, there were no significant differences in
users’ task completion rates or task accuracy scores between the
two conditions. Notably, as opposed to our hypotheses H1-H2, there
was no difference in users’ perceptions of accuracy and relevance
for both LLMs, and users mostly failed to recognize instances where
the models provided incorrect answers, including hallucinations.
Our qualitative findings further shed light on our research questions
and reveal a lack of awareness among participants regarding LLMs’
biases and limitations. Participants attributed their inability to com-
plete a task and locate suggested features in the application to their
personal shortcomings rather than recognizing instances of LLM
hallucinations offering nonexistent options. Additionally, users mis-
understood the prompt text’s influence on LLM output, likening
prompts to traditional search engine keywords. User perception of
LLM responses as contextually relevant stemmed from a bias to-
wards the query context. Importantly, our study highlights the risks
of undue trust in LLMs, as users frequently exhibited unwarranted
confidence in LLM-generated responses due to their human-like
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nature and consistent, contextual relevance, distinguishing them
from traditional chatbots or virtual assistants like Siri.

The implications of our research extend beyond the immediate
findings and have far-reaching significance for the broader IUI
research community. Our observations highlight the need for end-
users to exercise caution and critical thinking when relying on
LLMs for software-related assistance. In an era where LLMs are
increasingly integrated into various facets of daily life, from virtual
assistants to content generation tools, understanding user percep-
tions and misconceptions about these systems is imperative. By
shedding light on the lack of awareness regarding LLM biases and
hallucinations, our study calls for a fundamental reevaluation of
the way we design, deploy, and educate users about AI-powered
assistants.

We now reflect on our key insights and highlight opportunities
for designing LLM assistance for feature-rich software tasks while
promoting transparent, responsible LLM interfaces to enhance user
understanding and mental model formation. Our findings will be
valuable for IUI andHCI researchers, interface designers, developers
and others working on LLM-powered assistants.

5.1 Integrating LLM help into feature-rich
applications

Our results demonstrate the value that LLM-based assistants, such
as ChatGPT, can provide in generating relevant software-related
assistance within a single platform. Unlike traditional help-seeking
resources and chatbots (e.g., Google search, blogs, Siri, etc.) where
users have to assimilate help content through multiple outlets, our
participants appreciated receiving relevant detailed instructions by
typing in a prompt. Having said that, our findings resonates with
the speculations of other researchers [20] that Baseline GPT-4 is not
meant to provide assistance for all types of tasks. Our SoftAIBot,
that was optimized for particular feature-rich software guidance
context, performed better and generatedmore relevant and accurate
step-by-step software assistance. In our approach, we employed
Retrieval Augmented Generation (RAG) on standard software doc-
umentation. Future developments could involve instruction tuning
[53], which includes pairing more specific instructions with the
software-specific steps and correlating this with expected output.
The onus should transition from users to software developers and
customer support to create such instructional pairs for ensuring
them to be crafted in a manner that allows general-purpose LLMs
to be fine-tuned [30] for generating user-centered and optimized
software guidance.

While SoftAIBot generated relevant and accurate software assis-
tance compared to Baseline ChatGPT, there were obvious limita-
tions as users were not able to leverage this information to complete
the software tasks accurately. In particular, users found the textual
LLM output to be limiting compared to other visual-based help-
seeking mediums. For example, software instructions on YouTube
allow users to follow procedural steps “as is” without needing to
verify and locate specific features. However, with LLMs, users had
difficulty in mapping the LLM output to features in the software,
especially in cases where the LLMwas hallucinating and referred to
non-existent features. Video-based help-seeking mediums should
not be dismissed as instructional tools. Instead, to mitigate the issue

of locating the exact instructions that users experience with videos,
there is an opportunity for technologies like ChatGPT to aid in video
summarization tasks and to extract more relevant snippets from
videos [15], enhancing the ease of locating specific information.

5.2 Transparent and Responsible Interface
Design of LLMs

At a more fundamental level, our study raises some caution: while
developers and researchers are investing in improving AI models
and how LLMs can provide context-specific guidance, users may
not always perceive these enhancements as substantial improve-
ments in accuracy and relevance. Recent literature has already
raised concerns about users’ over-reliance on AI systems, such as
in the context of AI-based maze-solving tasks [49]. Although the
landscape of user behaviors andmental models is more multifaceted
with LLMs, our study demonstrates a similar phenomena of over-
trust with LLMs. Furthermore, we extend prior works by revealing
the nuances in users’ mental models of the LLMs triggered by the
inherent biases of LLMs, leading to overtrust and users’ failure to
recognize erroneous or hallucinated output: “Because it is AI, how
can it be wrong? I am going to stop using my brain as I literally gave
it gibberish and still it works. I [will] doubt myself before doubting AI.”
(P15) Such overtrust in LLM assistants can be dangerous, especially
for novice users who do not have familiarity with the underlying
powerful AI technology. These findings from our study underscore
the complexity of user interactions with AI and highlight the need
for more transparency in addressing users’ expectations and mis-
conceptions. This can be as critical as advancing the underlying AI
technologies and it is essential to design interfaces that are more
transparent and responsible [45]. There is need to consider more in-
novative user-centered solutions for mitigating bias and enhancing
transparency in AI systems, thereby contributing to the responsible
and ethical development of AI technologies.

To enhance the transparency of LLMs among end-users, one ap-
proach could be to embed interpretability within these systems. By
articulating why and how LLMs derive specific recommendations,
users can gain perspectives into the underlying mechanisms and
trust the provided instructions with a higher degree of certainty.
One possible direction is through the illustration of confidence
percentage scores for each LLM instruction as these scores have
shown to enhance the perception of transparency and trust [21].
Other potential direction is through explainability techniques [37]
(e.g., visual example-based explanations [9, 21]) that can indicate
why the system did what it did and verify an AI’s recommendation
[13] by demonstrating the similarities between users’ intent and
examples in the training set [9, 21, 27, 28]. Training datasets of these
LLMs needs to be designed such that confidence scores or visual
examples are part of the dataset to enhance transparency within
the LLM technologies. Such innovative advancements in LLM de-
velopment not only pave the way for enhanced user interaction but
also ensure that the model’s suggestions are verifiable and reliable.

5.3 Bridging the Gap Between Mental Models
and LLM Interfaces

With the rapid pace of innovations in Generative AI and LLMs,
there is need for HCI research to focus on understanding user
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perceptions and users’ mental models of LLM-based assistants for
software help-seeking. Our study complements existing works high-
lighting usability issues in crafting prompts [5, 41, 51] and provides
initial insights into the gaps in end-users’ mental model when us-
ing prompt-based interactions in context of software help-seeking.
The affordances of LLMs can be misleading as they are designed
to be walk-up-and-use and support natural language interaction.
However, similar to insights from recent work on non-ML expert
designers prototyping ML apps [52], we also found that crafting
effective prompts is cumbersome, especially for non-AI experts.
Our study contributes new knowledge: non-AI expert end-users
of ML/LLM applications must adapt their existing mental models
from traditional help-seeking mediums to understand the new inter-
face of LLMs. To bridge the gap between users’ mental models and
LLM user interfaces, there is an urgent need to leverage strategies
such as think-aloud studies to further understand nuances in users’
mental models of LLMs [33]. Although we did not see significant
individual differences in our sample, it may be worth investigating
how different sub-groups of software users might benefit from LLM
help seeking. Our study demonstrates that we cannot assume users
will intuitively grasp the capabilities and limitations of LLMs. There
is a clear need for comprehensive user training and education and
clear communication about how Generative AI systems operate.

With software help-seeking, the challenge for end-users lies not
only in flawed mental models of LLMs but also in the absence of
a clear understanding of the underlying software application. Our
research complements the emerging work in this space, being novel
in documenting the challenges users encounter with LLMs for soft-
ware help tasks, including their mental models and overtrust, which
impacts both their utilization of LLMs and perception of software
features, regardless of LLM optimization or explicit prompt guide-
lines (SoftAIBot). Users found it difficult to understand, map, and
apply LLM instructions to software features. To address this, en-
hancing the UX design of LLM interfaces by highlighting relevant
software UI sections during onboarding can improve user interac-
tion, particularly for feature-rich software[21, 27, 28]. Exploring
the interplay between users’ understanding of LLMs and the under-
lying software presents new human-AI design possibilities. Overall,
our findings show that LLMs optimized for generating software spe-
cific guidance (e.g., Copilot [43]) and embedded inside feature-rich
applications, could be promising for learning and using complex
features. Once these systems become available, future studies can
compare our findings from SoftAIBot with such systems and fur-
ther investigate the level of guidance and automation that may be
appropriate for LLMs generating software guidance.

6 LIMITATIONS
In this paper, we experimented with two LLM-based assistants to
explore how end-users make use of them for software tasks related
to feature-rich applications. While our findings shed new light on
users struggles in employing LLMs for software help-seeking, some
caution should be used in interpreting our results. For instance, our
findings could be constrained by the specific applications utilized
during the experimentation.Whether our findings would generalize
beyond the state-of-the-art LLM implementations used in the study
should be investigated in future work. Given the rapid evolution and

variability among modern LLMs, the outcomes may be constrained
to currently available LLMs. Although we recruited end-users who
were non-AI experts, we did not control for other individual differ-
ences, such as expertise or familiarity with underlying feature-rich
software applications. Future studies should conduct experiments
and more qualitative studies with larger and varying populations
to better capture these individual differences.

7 CONCLUSIONS
In this research, we investigated the effectiveness of the LLM-
generated software guidance and prompt guidelines, by comparing
the Baseline LLM assistant with our own implemented SoftAIBot
in providing accurate and relevant assistance for software tasks.
Our results highlight the challenges users faced in following LLM
assistance and point to instances of users attributing flaws to them-
selves instead of recognizing LLM biases. Our study highlights the
pressing need for interdisciplinary collaboration among researchers,
designers, developers, and educators to bridge the gap between user
expectations and AI realities. By addressing these challenges head-
on, we can foster a future where AI systems are not only more
powerful but also more comprehensible and accountable to their
users, ultimately facilitating human-AI interaction across a range
of domains.
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A STUDY MATERIALS AND TASKS
We provide detailed information on the study questionnaires, inter-
view and tasks asked to the participants during the experiment.

A.1 Post-task questionnaire
We asked participants to fill the post-task questionnaire to evaluate
each LLM interventions after performing the software tasks. Partici-
pants were presented with a Likert scale consisting of five response
options, prompting them to express their level of agreement or
disagreement in response to the presented questions.

• The LLM provided me with the accurate assistance to com-
plete the given task correctly.

• Using the LLM made it easier for me to finish the software
task.

• It was difficult for me to apply assistance provided by the
LLM in the software task.

• It was difficult for me to figure out correct words (input
prompt) to seek desired help for the task.

• The assistance provided by the LLM was relevant to what I
asked in the prompt.

• I trusted the LLM assistance to finish my software task.

A.2 Follow-up interview
During the follow-up interview, we asked following questions to
the participants to better understand the difficulties they faced
while seeking LLM assistance for software tasks.

• Describe your experience in seeking the assistance from the
LLM assistants for performing the tasks?

• When you normally work with a new software application
or unfamiliar features, how do you typically get help?
– Have you used LLM assistants before such as ChatGPT,
Github Copilot, BARD, etc? If yes, can you compare your
experience with these assistants to seek help for software
tasks during the study vs other tasks you have performed
before?

• Now that you have seen and interacted with 2 different types
of LLM assistants, how would you rank them in terms of
following metrics in providing required assistance
– Relevance: such that Rank 1 indicates the LLM assistant
which provided strongly relevant help for your prompts
and tasks and Rank 2 indicates not at all relevant? Why?

– Accuracy: Which LLM provided you with accurate assis-
tance for your tasks. Please rank them where Rank 1 will
be highly accurate and Rank 2 is least accurate? Why?

– Explainability: Which LLM helped you improve your next
query or prompt to obtain the desired assistance for your
task. Please rank them where Rank 1 will be highly ex-
plainable and Rank 2 is least explainable? Why?

• How do you think the LLM assistant interface worked (i.e.,
what it did or did not do with respect to your tasks) in LLMs
used in the study to accomplish your tasks? (You can create
a sketch or describe in steps using your task example)

• Please describe what worked well while seeking from (a)
Baseline ChatGPT (b) SoftAIBot - any LLM output/messages,
prompt guidelines, etc., that were helpful for you in obtaining
the desired help?

• Can you describe concerns while using the LLM assistants
(Baseline ChatGPT, SoftAIBot) to improve the prompt and
obtain desired help- what did not work for you while using
the LLM assistants for your tasks?

A.3 Description of Study Tasks
We describe the actual software tasks the users had to conduct
seeking assistance from LLM intervention.

• Microsoft PowerPoint tasks:
– Participants were asked to look up and use instructions
fromLLM intervention to create an interactive quiz (named
as “EasyQuiz”) in Microsoft PowerPoint to create ques-
tions where users can type in their response.

– Participants were asked to look up and use instructions
from LLM intervention to develop a project timeline in Mi-
crosoft PowerPoint that is visual and animated and looks
like the reference animated project timeline (Participants
were provided with the reference project timeline).

• Microsoft Excel tasks: (For both the tasks, participants
were provided with the corresponding dataset for analysis)
– Participants were asked to look up and use instructions
from LLM intervention to find the predictive analytics
of the sales values from each customer by considering
the income of customer in Microsoft Excel. Based on this
analysis, predict the estimated sales of a new customer
who has an income of $40k?

– Participants were asked to look up and use instructions
from LLM intervention to analyze and visualize employees’
performance trends and how performance correlate with
the average attendance (i.e., absent hours).

B TECHNICAL DETAILS OF LLM
INTERVENTION

This section lists technical details of prompts and parameters used
in OpenAI APIs calls in both LLM interventions.

B.1 Parameters used in OpenAI
ChatCompletion objects:

For both the LLM interventions, we used the same parameter values
except the ’messages’ parameter which had varied values.

• Model: gpt-4-0613; Temperature: 1; Max Tokens: 400;
Top-p (nucleus sampling): 1; Frequency Penalty: 0; Pres-
ence Penalty: 0;
The temperature is set to 1, introducing randomness to the
model’s output. The max tokens parameter limits the re-
sponse length to 400 tokens. Top-p is set to 1, indicating
that the model considers the entire probability mass for sam-
pling. Frequency and presence penalties are both set to 0,
indicating no penalty for frequent or rare tokens.

• The “messages” parameter accepts a list comprising initial
system message and subsequent user interactions that are
dynamically appended to maintain context.
messages: [Empty list]; For Baseline ChatGPT, messages
parameter starts with an empty message list, allowing users
to initiate conversations without a predefined LLM role.
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messages: Role: System; Content: “you are an expert in
PowerPoint”; For SoftAIBot, the system message explicitly
defines it as an expert in Microsoft PowerPoint. This pro-
vides a contextual foundation for subsequent interactions,
emphasizing the LLM’s proficiency in addressing queries
related to PowerPoint.

B.2 RAG Prompt for SoftAIBot
The RAGprompt is constructed to guide SoftAIBot in the knowledge
retrieval process:

{ " r o l e " : " u s e r " , " c on t en t " : f " you have the
f o l l ow i n g i n f o rma t i on : \ n { top_chunks
} " } , { " r o l e " : " u s e r " , " c on t en t " : f " now
he lp me in f i n d i n g the answer to t h i s
qu e s t i o n : { u s e r query } " }

The first user prompt provides SoftAIBot with information from
the top-retrieved chunks (top_chunks) during the knowledge re-
trieval process from the software documentation. This ensures that
the LLM is aware of the context and relevant details extracted from
the software documentation. The second user prompt instructs
SoftAIBot to assist in finding the answer to a query asked by the
user in the chat. This step triggers the LLM to generate a response
based on the acquired knowledge, facilitating a seamless interaction
between the user and SoftAIBot.

The code repository for both LLM interventions is available upon
request.
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