
CheatSheet: A Contextual Interactive Memory Aid for Web Applications

Laton Vermette* Parmit Chilana† Michael Terry‡ Adam Fourney§ Ben Lafreniere¥ Travis Kerr**
University of

Waterloo
University of

Waterloo
University of

Waterloo
University of

Waterloo
University of

Saskatchewan
University of

Waterloo

ABSTRACT
We present CheatSheet, a novel contextual interactive memory aid
that helps users track their learning progress and refind information
when working with complex web applications. Unlike most
refinding systems that rely on background monitoring of search
sessions or browsing histories to automatically suggest content to
users, our approach actively engages users in assessing and curating
helpful content for later use. Users create application-specific notes
using CheatSheet that contain the visual state of the application
overlaid with any text or diagram annotations. Users can also
extract snippets of relevant help and tips from other web resources
(or other users) and link them to their application-specific
CheatSheet. Instead of having to remember or scour through
previous notes, bookmarks, or folders, CheatSheet automatically
retrieves the recently added notes within the application’s user
interface. We discuss findings from formative interviews that we
used to derive a set of design goals for designing an interactive
memory aid, present the design and implementation of CheatSheet,
and report on an observational user study that sheds light on the
range of users’ note-taking and refinding strategies that CheatSheet
was able to successfully support.

Keywords: Software learning; software help; memory aid.

Index Terms:!H.5.2. Information interfaces and presentation: User
Interfaces—Graphical user interfaces.
1. INTRODUCTION
The complexity of modern software applications often requires end
users to accomplish a task or solve a problem by trial-and-error or
by scouring for examples, tutorials, Q&A, or other forms of help on
the Web. However, users can face a key problem by relying on
procedural and example-based help resources: while such resources
are effective in rapidly improving a user’s performance in the short-
term, the user may fail at demonstrating the same knowledge and
skills after a time lapse or in a new context requiring transfer [12].
For example, an office worker may successfully follow a tutorial to
configure complex steps in an enterprise application, but later
struggle in remembering even the basic steps when attempting to
help a colleague with a similar task. Furthermore, the user may not
even remember which resource was used in the learning process or
how it was helpful.

In this paper, we investigate a novel approach for helping users
track their learning progress and refind information during the use
of a web application. Unlike other systems for refinding
information on the Web that rely on background monitoring of
search sessions or web browsing histories (e.g., [11][14][24]) to
automatically suggest content, our approach puts the onus on

users to reflect on their interaction and curate helpful content for
later use. This approach is inspired by the idea that when learners
draw, articulate a self-explanation, or annotate, they create an
external representation of the current state of their understanding,
which not only helps in reinforcing what they learned, but also
later serves as a useful memory aid [1][4][7].

We present CheatSheet, a contextual interactive memory aid for
web applications that helps users create, organize, and retrieve
application-specific annotations, notes, and screenshots within the
user interface (Figure 1). One of the key findings from our
formative study was that users typically go back-and-forth
between a variety of learning resources, such as tutorials, videos,
and Q&A sites when proactively learning an applicataion. To
support this, CheatSheet allows users to capture and annotate
snippets of relevant help and tips from any web-based resource to
augment their application-specific notes. CheatSheet associates all
annotated notes with particular web applications and
automatically loads previously created notes in the side bar of the
relevant application. CheatSheet also provides facilities for users
to organize, browse, search, and easily share their CheatSheet
library or individual notes with other users.

The design of CheatSheet evolved from multiple design
iterations inspired by a formative study that examined software
users’ proactive learning strategies and a second, task-based
observational study using the initial CheatSheet prototype. The
range of memory aids generated by users and the users’ overall
positive reactions to CheatSheet provide validation that
CheatSheet is highly versatile in supporting a wide range of
software learning tasks. In our discussion, we tackle some of the
broader issues of refinding and retention issues in the context of
learning software and the potential design space of both manual
and automatic solutions for creating cheat sheets.

This paper makes the following contributions:
• Empirical findings from an interview study and observational

studies that highlight the diversity of software users’ proactive
learning strategies.

• A novel interface for creating a CheatSheet, an application-
specific memory aid that can include annotations, notes, and
screenshots of the current application and snippets of helpful
resources from the Web.

• An interactive retrieval interface that automatically retrieves a
user’s CheatSheet containing curated helpful content and notes
within an application’s user interface. Users can further
organize, search, and share their CheatSheets with other users.
Importantly, our implementation can work with any web
application, making it accessible and usable by millions of
users using web applications every day.

2. RELATED WORK
While the concept of helping users track their learning progress
with a “cheat sheet” has not been explicitly explored in software
learning research, we discuss several other tools for learning,
information refinding, and web annotation that have elements
related to our CheatSheet system.

{*lvermett,†pchilana,**tjkerr}@uwaterloo.ca
{‡mterry, §afourney}@cs.uwaterloo.ca
{¥ben.lafreniere}@usask.ca

2.1. Software Learning Tools
There is a growing body of HCI research concerned with helping
users to effectively use complex software applications. Recent
examples include multimedia systems that employ videos and
animations to demonstrate use [15][22][27], interactive expert-
shadowing and tutorial generation techniques [8][13][16][20], and
integration of community-generated examples and solutions in the
application [6][23]. These types of standalone help systems
encourage learning by demonstrating procedures and showing
examples, but do not explicitly consider what happens when a
user needs to recreate her steps after a time lapse and does not
have access to the same resource. Also, as indicated by our
formative study, users rarely use a single learning resource when
trying to learn a new application—they may begin with a tutorial
and find that only one step is useful and then switch to another
tutorial or improvise some steps along the way, or search for and
incorporate additional examples from the Web. With CheatSheet,
the user can manually curate the content and decide which tutorial
steps, answers, or video frames in the help-seeking process were
actually useful. Instead of trying to remember where these notes
were saved, the user can automatically see all application-specific
notes in the side bar of the application’s user interface.

2.2 Tools for Refinding and Organizing Web Content
The problem of refinding information on the Web [5] has inspired
numerous systems in information retrieval and HCI to help users
locate previously seen content. For example, refinding systems
have been developed for desktop use [11], search queries, [24],
and web browsing sessions [30]. However, CheatSheet only
automates the process of retrieving users’ application-specific
notes and provides full manual control in selecting and curating
content that users actually find useful or anticipate using later.

Some systems that have elements related to CheatSheet include
tools that allow users to select and summarize content from the Web
(e.g., [9][10]). But, unlike CheatSheet, these systems are driven by

the goal of generating templates and building automated ways of
collecting similar web content, rather than creating a memory aid.

Systems that explicitly support refinding when learning a software
application are only beginning to emerge. For example, InterTwine
[14] provides an automatic linkage between the Web browser and a
desktop application to generate a shared interapplication history and
assist with task-specific refinding. However, the underlying
assumption here is that users mainly access help through a search
engine. In contrast, CheatSheet does not make any such assumption
and tries to facilitate a wide range of users’ needs in assessing,
selecting, and curating help content from the Web.

2.3 Tools for Recording Notes and Annotations
The annotation aspect of CheatSheet builds off of a rich history of
document annotation and note-taking systems, even though they
have not been designed for the purpose of learning software. For
example, Margin Notes [28] automatically annotates and rewrites
a web page by monitoring a user’s past actions on the page. On
the other hand, systems such as MADCOW [3] and SpreadCrumbs
[19] allow users to insert annotations within specific locations in a
web page. Although relevant, a limitation of these annotation
approaches is that they tend to be obtrusive and distracting
because they change the underlying HTML DOM and appear in-
line every time a user visits the page. In contrast, users can turn
CheatSheet on or off at any point, and can also open their
application-specific CheatSheet in another tab or window.

CheatSheet’s screen annotation features are most closely related
to ScreenCrayons [25] where users can add notes and highlights
to any captured screen. However, our technical contribution is not
in being able to annotate screens, but rather in being able to create
application-specific notes and linkages for learning a new
application. For example, our system can support CheatSheet
creation for a task sequence by automatically collecting relevant
screens based on the user’s input and traversal across a variety of
resources (tutorials, Q&A sites, etc.).

Figure 1: The CheatSheet Gallery interface displays a user’s notes related to an application and allows the users to: (1) toggle between three
different views (grid, carousel, and radial); (2) filter the notes based on the task; (3) view shared notes or select multiple notes for editing (i.e.,
deleting, sharing); (4) zoom-in to the note by hovering over a thumbnail and see the related description as a tooltip (not shown); (5) search for
notes across the user’s library; (6) mark notes as favorites or delete them; (7) view the overall task description; and, (8) add a new note.

And, finally, there are commercial tools, such as Evernote and
OneNote that support general note-taking on the Web and offer
several clipping and annotation features. CheatSheet differs from
these systems in significant ways: 1) CheatSheet uses the visual
representation of the page as the default platform for further
annotation and linking to facilitate recall; 2) CheatSheet allows
for a template of notes to be generated semi-automatically for a
task sequence by monitoring users’ input activities; and 3)
CheatSheet automatically retrieves users’ notes relevant to the
current application and offers facilities for users to rearrange and
select notes they want to see when the application is re-accessed
(functioning more like a physical cheat sheet for the application,
rather than a generic notebook).

In summary, while CheatSheet is inspired by a wide range of
software learning, information refinding, and document
annotation tools, our design is among the first to function as a
lower-friction memory aid that helps software learners track their
progress and assess, curate, organize, and retrieve application-
specific help content.

3. PROACTIVE SOFTWARE LEARNING PRACTICES: A FORMATIVE
STUDY
To inform the design of CheatSheet, we first carried out formative
interviews with 12 adult software users who were proactively
learning a software application by enrolling in a course or by using
web resources to learn on their own.

3.1 Participants and Procedure
Our 12 interviewees (6 males, 6 females) were between the ages of
19-64 and included office workers, scientists, professors, and
undergraduate and graduate students. These interviewees described
a range of complex applications that they were trying to learn for
work or school-related tasks, including statistical analysis tools,
office software, citation management systems, web development
tools, and scientific data analysis tools. (Only one interviewee had
any formal training in Computer Science and the majority described
themselves as “non-technical” users). We carried out semi-
structured interviews that lasted between 30-45 minutes and queried
about users’ strategies for re-accessing or re-using previously
learned functionality. We also inquired about the extent to which
they proactively took notes, used annotations, or wrote self-
explanations. Finally, we asked the interviewees to fill out a brief
demographic questionnaire. We transcribed and analyzed the data
using an inductive analysis approach to distill recurring themes in
interview responses.

3.2 Key Findings and Design Goals
Over two-thirds of our interviewees explained that they always used
some form of note taking when learning a new application, because
they were not confident about remembering all the details and
nuances upon first exposure. The remaining interviewees said that
they initially used no particular strategy, but often became more
proactive about taking notes when they struggled to re-find a
previously learned functionality. All interviewees also described
social uses of their notes, whereby they either asked for help or
shared snippets of helpful information with others.

Overall, we found that learners placed the most emphasis on
retaining visual cues related to the current task or workspace: “you
just need something to jog your memory…they call it the ‘light bulb
effect’” (P09). Participants sometimes created print-outs of screens
and annotated them by hand to retain such cues. Other users
preferred electronic versions for taking notes—for example, they
would take screenshots of their current window and paste them
into tools, such as MS Word and MS PowerPoint: “I take notes and
I also take pictures, screenshots, so later when I am doing the other

stuff, having the application [view] there is nice… I usually send an
email with notes to myself…” (P10).

While having the visuals was important, more than half of the
interviewees also valued textual explanations of the needed steps.
A few of these interviewees particularly emphasized having
explanations “in their own language.” Other interviewees
explained how they wrote notes to remind themselves of any
unexpected nuances: “When I find that something works in a
surprising way, I always write that down. I have a separate section
for that, just like little reminders for myself to say this doesn’t work
the way you think it does” (P12).

One of the key findings from our study was that learning
software involved a complex interplay between a variety of
different resources: switching between the application, a tutorial, a
help video, documentation, a web forum, or asking another user or
expert. More than half our interviewees described strategies
involving annotations of links or snippets taken from web
resources, and efforts to store them in a meaningful way, such as
in annotated emails, text files, and bookmarks: “…if I am learning
something new, like a programming language, I will make a little
cheat sheet for myself, so I will have a reference file…really just a
bullet list of commands I use frequently and then a short explanation
of what to do if it is not clear...and maybe URLs” (P05).

One challenge identified by the interviewees was being able to
organize and manage application-specific notes. Interviewees
described how it was useful to initially have their notes saved on
their desktop or in folders that could be easily accessed, but over
time, these notes became more scattered and difficult to locate.
Participants mentioned saving notes in email or text files so that
they could use built-in search features, but they often had
difficulty in coming up with a useful query to look up what they
had actually saved. Some interviewees mentioned they would use
browsers’ bookmark features, but ended up having too many
bookmarks over time.

Based on findings from this formative study and the known
benefits [1][4][7] of actively engaging users in learning and
information finding tasks, we synthesized four main design goals
for CheatSheet:

1 Exploit visual memory channels: Since software users find
visuals to be the most effective when trying to remember complex
software features and functions, they should have access to a
lightweight method for generating visual forms of notes.
2 Facilitate aggregation of help resources: Since the use of an
application and help resources is often intertwined with the
learning process, users should be able to easily aggregate,
annotate, organize, and locate “snippets” of information from a
variety of resources, in addition to application-specific visuals.
3 Allow for in-application contextual retrieval: Users should
be able to quickly retrieve and recognize their notes in the context
of the application they are currently using.
4 Support social sharing and learning: Users should have quick
access for sharing their notes with other users and collecting
helpful snippets shared by other users.

4. CHEATSHEET USER INTERFACE: THE INITIAL DESIGN
Inspired by our design goals, we designed and implemented
CheatSheet as a browser plug-in that can work with any web
application. Our initial design allowed users to access CheatSheet
with a single click on the browser’s menu toolbar. The main
components of the CheatSheet system are the CheatSheet Gallery
(Figure 1) and the CheatSheet Canvas (Figure 2). Users create an
account for their first use and remain logged in to the CheatSheet
system throughout their browser session.

To describe the main user interface and
functionality of CheatSheet, we begin with an
example usage scenario.

4.1 Example Usage Scenario
Bob is learning about 3D printing for the first
time and is trying out Tinkercad, an online
computer-aided design (CAD) application to
model his 3D object. He has a Tinkercad file
open and is following an online tutorial on
creating a birdhouse. He first inserts a cylinder
and a roof-shaped object and tries to follow
some complex instructions on rotating and
merging both of the objects. Even though Bob
followed all the steps, he does not feel confident
that he understands it well enough to do it on his
own next time and decides to create a
CheatSheet by accessing his recently installed
browser plugin.

Bob calls his CheatSheet “Tinkercad” and
adds a new note. The CheatSheet system
automatically captures an image of the
application window in a new canvas (Figure 2)
and displays a variety of annotation tools (Figure
2.1) and metadata fields for description (Figure
2.2-2.7).

Bob first uses the ellipse tool to draw attention
to the rotation feature, and then adds arrows and
text to describe the steps. He also adds a
description in the text field (Figure 2.3) to remember what he
actually did in his own words, and specifies the task (Figure 2.4)
to be “rotating objects.” When he presses save, he is taken to the
gallery view (Figure 1) where he can browse and organize his
other notes for his Tinkercad CheatSheet.

Bob goes back to the tutorial and notices that there were some
useful descriptions in the tutorial for key concepts such as
“workplane” that he wants to remember for later. On the tutorial
site, he accesses his CheatSheet library, and now selects the
existing Tinkercad CheatSheet to add his note. He crops out a
snippet of the particular area of the tutorial page that he wants to
save and tags it as “definitions.” Now, he sees that both his
annotated image and tutorial snippet appear as part of the
Tinkercad CheatSheet.

Later that day, Bob’s colleague Chris emails him a question
about rotating objects in Tinkercad. Bob visits the Tinkercad
application and opens up his CheatSheet, where he is
automatically shown his Tinkercad notes. He finds his note on
rotating objects and since Chris is already a user of CheatSheet,
Bob is able to find him quickly by typing his name (Figure 2.5)
and share the note. The note immediately gets added to Chris’
CheatSheet Library.

4.2 CheatSheet Canvas for Creating Notes
Users add new notes to their CheatSheet library by clicking on the
“add a note” link (Figure 1.6) from the Gallery view and edit and
save content through the CheatSheet Canvas (Figure 2).

4.2.1 Visual Capture of Context and Annotation
To support our design goal of exploiting visual memory channels,
CheatSheet automatically captures and places a screenshot of the
user’s current window centered on the canvas when a user adds a
note. On the right side of the canvas, various annotation tools are
available to mark up the screenshot (Figure 2.1), such as

highlights, shapes, arrows, and text. Users can also crop a specific
portion of the image.

Users can enter their own description or edit text that can be
automatically extracted from a web resource by simply
highlighting it on the screen before an image is captured. As the
user edits the canvas, the preview window (Figure 2.2) shows a
real-time preview of the thumbnail that will be generated and
shown in the gallery interface. Users can resize and pan through
the preview to highlight particular annotations.

To retain the original context, when a new note is added, the
system automatically saves the URL of the page, allowing users to
have a “bookmark” to the actual page. This link can be accessed
from the toolbar (Figure 2.6).

4.2.2 Aggregation of Relevant Help Content
To support our design goal of aggregating and organizing notes
from disparate web resources, CheatSheet allows users to “tag”
their note (Figure 2.4) with the name of an application and any
specific task that the note is relevant to (the default tag is “general”).
The system will autosuggest tags that have already been used in the
CheatSheet library and these tags can be further used in the gallery
interface (Figure 1.2) to filter notes.

4.2.3 Social Sharing and Collaboration
To support our design goal of social sharing, the system provides
a simple mechanism (Figure 2.5) to quickly share a note with
another user who is already using the CheatSheet system through
a simple lookup of usernames (common in social sharing sites).
Recipients of these notes can annotate and resend these notes back
to the senders (or other users) within the CheatSheet environment.

4.3 CheatSheet Gallery for Browsing Notes
In the Gallery view (Figure 1), CheatSheet overlays thumbnails of
a user’s notes for the current application. (The current application

Figure 2: The CheatSheet canvas displays a screen capture of the current view and
contains: (1) a toolbar with various annotation tools; (2) a preview window to set the
thumbnail view for the note; (3) a textbox for description; (4) tags to describe the task; (5)
a feature to share the note by specifying a username or email; (6) a bookmark to the page
where the screenshot was captured; (7) a tag to specify the application name.

is detected by matching the domain name of the application’s
URL). Users have several options to browse, update, and organize
their existing library of notes.

4.3.1 Browsing Notes in the CheatSheet
To support our design goal of facilitating in-application contextual
retrieval and to promote long-term use of notes, annotations, and
screenshots, CheatSheet offers several browsing and searching
features.

CheatSheet initially shows users’ existing notes as thumbnails
sorted by creation time, in a grid view (Figure 1). (The thumbnails
are laid out according to the preview set by the user in the Canvas,
as shown in Figure 2.2). Users can use the task-based browsing
feature to filter notes related to different tasks within the
application. For example, in the usage scenario, Bob may have
several notes related to the Tinkercad application, but can quickly
filter to find notes related to the rotate function (Figure 1.2). Users
can also rearrange the notes by simply selecting and dragging
them in the gallery.

If the user has received shared notes from other users of the
CheatSheet system, she can view them by clicking on “Shared
With Me” (Figure 1.3).

4.3.2 Thumbnails and Zoom-in Interaction
In the gallery layout, users can hover over thumbnails of notes to
quickly zoom into a certain location or to see the description of
the note as a tooltip (clicking on the note opens it in the canvas).
We adapted this idea from similar designs, such as Data Mountain
[29], where the use of thumbnails and tooltips leverages the user’s
spatial and visual memory and helps them remember previously
viewed content.

4.3.3 Searching For Notes
As users’ CheatSheet libraries grow over time with multiple tasks
across different applications, users can rely on autocomplete
keyword search (Figure 3) to quickly find notes based on task name,
application name or the associated description. Search results
display thumbnails of matching results and the associated metadata.

4.4 Implementation
We implemented CheatSheet as a Chrome browser extension,
although the core functionality can be easily adapted to other
browsers. CheatSheet is independent of any knowledge of the
implementation of the underlying web application. All notes and
user-related information in the CheatSheet system are currently
stored in a database on our third party server. The history of a user’s
interactions in CheatSheet is stored and retrieved from the client
side. When a user adds a new note, the system automatically uses a
plug-in to capture the currently visible tab as an image and captures
any selected text to populate the description field.

5. FORMATIVE USER EVALUATION WITH CHEATSHEET
To understand how users would perceive the initial design of
CheatSheet and what type of note-taking strategies they would
exhibit using this medium, we carried out an observational
scenario-based user study.

5.1 Participants and Procedure
We recruited 13 participants for this user study (7 females, 6
males). They were between the ages of 18-49 and had educational
backgrounds ranging from high school diplomas to graduate
degrees. All but four of the participants spoke English as a first
language and only two of the participants had any formal training
in Computer Science.

The user evaluation was carried out in a single session lasting 45-
60 minutes. We began each session with a brief three-minute
overview of the CheatSheet system and showed participants how to
interact with various CheatSheet features using Google Maps as an
example application.

Users were asked to complete two tasks (described below)
using CheatSheet. Next, participants filled out a brief post-task
questionnaire that collected Likert-scale responses on a scale of 1-
7 about their perceptions of the system and demographic
information. Lastly, we conducted follow-up interviews to probe
into participants’ use of different CheatSheet features and their
overall reactions. We performed the study using our custom
Chrome (v33.0) extension on a Windows 7 laptop machine with
12GB RAM and 2.3GHz processor, connected to a 17-inch monitor.
We captured participants’ mouse movements and on-screen activity
using screen capture software, and audio-recorded and transcribed
users’ answers to interview questions.

5.2 Study Tasks
For our first task, we told participants that they were trying to
learn a new online photo editing application called Pixlr. With
two images open, their task was to learn how they could move a
boat from the first image to the water in the second image. We
gave users the option to use their own knowledge to perform this
task or to use an online tutorial (open in another tab) that
explained how to “cut” and paste objects from images using the
polygonal lasso tool. In doing this task, we asked the participants
to imagine that they will need to perform this task again, and to
use the CheatSheet system to make notes for later access.

For the second task, we told participants that their boss had data
on sales by each employee over a one-year period (provided as a
Google spreadsheet). He was interested in calculating averages, but
was not familiar with spreadsheet functions. We asked participants
to create a CheatSheet for showing how to calculate the overall
average sale for each of the top employees using a pivot table.
Participants could use whatever resource they wanted to find help
on creating pivot tables if they were not sure.

5.3 Main Findings and Design Implications
Overall, we found that the majority of users quickly became
comfortable with CheatSheet upon their first use. Our questionnaire
analysis indicated that 85% (11/13) of the participants either strongly
agreed, agreed, or somewhat agreed that CheatSheet was easy to use,
that they enjoyed using the system, and that they would recommend
the system to others.

5.3.1 Using CheatSheet in Proactive Learning
All of our 13 participants consistently appreciated the idea of
being able to take screenshots and annotate them so that they
could visually remember the steps or retain cues. But, similar to

Figure 3: CheatSheet’s autocomplete search feature

our formative interviews, and research on different learning and
encoding channels [26], we observed that our participants had
different preferences for using text and annotations: “I am a visual
learner so I like the pictures...but, at the same time, just because
something is circled...like step 1-2-3, this wouldn’t help me in the order.
The description would help me remember” (U05)

We also found that 4 participants wrote the textual description “in
their own words” to facilitate recall rather than only rely on a
screenshot or steps copied from another source. The use of self-
explanations has been shown to be one of the most effective
externalization strategies [7] and CheatSheet offers the potential to
further exploit this strategy by explicitly prompting users to add such
explanations and better track their learning progress.

One surprising finding in our study was that another 4 of the
participants made notes only using snippets from tutorials and
other resources; these participants did not use the application
screenshots as part of their notes. Some participants extracted
snippets based on what they anticipated they might need later in
the task; some wanted to note things that did work and did not
work; others extracted snippets to note something interesting to
try later, even if it was not relevant to the current task: “I like to
combine insights from different web pages...CheatSheet [is] great
because not only can I record what I want, but I can also make notes
on what I did and how I deviated from the process.” (U13)

As we observed users’ different note-taking and learning
strategies and probed them about their choices, we found two
limitations with CheatSheet’s current design: 1) more than half of
the users felt that they would sometimes want notes to reflect a
task sequence, but it would be too cumbersome to add a single
note for each step; and 2) some users wanted a quick keyboard
shortcut to signal the capture of an important screen, but did not
want to curate it immediately as it interrupted their workflow.

5.3.2 Accessing and Retrieving Notes Through CheatSheet
More than half of our participants appreciated the ease with which
they could bring up their previous notes in an application without

having to remember where their notes were saved. The main
benefit here was that users did not have to rely on keyword search
to remember how they had previously located a useful piece of
information: “It [Google search] doesn’t always work. You find
something different or you find something contradictory or the thing
that you thought you found last time, you can’t find again” (U03)

Some participants also commented on the usefulness of the
task-specific organizational features offered by CheatSheet,
especially in comparison to some of their other more cumbersome
refinding strategies, such as opening up multiple tabs in the
browser: “Sometimes I use a session saver and save my tabs so I can
go back, but usually by the time I have so many sessions I have no
idea which session I have in which tab. So, this [CheatSheet] would
be really useful, since it is sorted by application…it can just know that
[this note is] specific for this application…” (U11)

Although all participants found CheatSheet’s application-
specific retrieval to be an asset, one drawback pointed out by
participants was that they may forget to explicitly invoke the
plugin through the browser toolbar.

5.3.3 CheatSheet as a Tool for Helping Others
All of our 13 participants were very positive about the social
sharing feature and some wanted to begin using CheatSheet
immediately, if only to use this feature. Surprisingly, some
participants even saw the quick visual sharing feature as being
useful in more formal contexts, such as help desks:“I think it is
great for help desk people…like if the user is having a problem
configuring Outlook or something…we could give her this link [from
CheatSheet]” (U08). This participant went on to explain that
having a lightweight in-browser shared visual context could save
a lot of back and forth that usually occurs with troubleshooting:
“…terminology, like what to call this, do you call it start bar, menu
bar, file menu bar, those kinds of things. You know like older people
or people not technically sound wouldn’t exactly know what you are
talking about with that terminology.”(U08)

The only limitation of the sharing feature that users noted was
that CheatSheet only allowed users to share notes with people who
had downloaded the CheatSheet plugin. There was concern that
some of the users (who were more likely to need help) would not
be able to install a plug-in on their own, making the social sharing
feature inaccessible for them (this was addressed in the second
design iteration).

6. SECOND DESIGN ITERATION OF CHEATSHEET
Although users were overall positive about the concept of having a
system for tracking their learning progress, we found a few critical
limitations with CheatSheet’s current design. In our second design
iteration, we focused on improving CheatSheet in 4 areas to better
support users’ diverse range of learning needs.

6.1 Providing automatic retrieval of existing notes
To save users the step of clicking on the plugin shortcut in the
browser toolbar, we investigated a new design through a sidebar
interface (Figure 4) that automatically retrieves a user’s notes
related to the current domain of the site. By default, CheatSheet
displays the notes most recently created (Figure 4.5), but users can
also choose to switch the view to see notes that they marked as
“favorites” or notes that they created related to other specific
tasks. Hovering over any of these notes brings up the full
description in a tooltip, and zooms into image preview based on
the user’s cursor location, giving them a way to quickly review
the most relevant notes without leaving the current page.

Figure 4: CheatSheet’s sidebar implementation that appears
automatically when a web application is loaded and allows users to:
(1) add a single note; (2) autocreate a template of multiple notes; (3)
open the full notes library; (4) toggle between different tags to see all
application-specific notes; (5) zoom into note previews.

The sidebar also offers quick access to add a new single note
(Figure 4.1) or add multiple notes corresponding to a task with an
auto-generated template (Figure 4.2). This second option was
designed for users who prefer to focus on their task and take notes
afterwards, or who prefer to capture a sequence of steps together
(discussed next).

6.2 Generating semi-automatic templates of multiple
notes
To facilitate the capture of a sequence of steps, we designed
CheatSheet’s autocreation process that can be triggered through a
start and stop button in the sidebar and browser toolbar. We
explored two modes of automatic capture: one which captures
notes at regular time intervals (8 sec), and one which captures
notes triggered by user interactions (i.e. clicking, scrolling,
switching tabs, pressing enter), inspired by systems that allow for
macro recording on the Web (e.g., [18][21]). In either case, the
system uses duplicate image detection algorithms to check if a
captured note is identical to the previous one, and discards these
duplicates to minimize the curation work for users. Each captured
step is stored as a note and users can review and edit them in the
gallery interface (Figure 5). Note that the goal here was only to
facilitate the capture of the users’ sequence of screens rather than
automate the CheatSheet creation process.

6.3 Providing facilities for power users
CheatSheet’s new design also provides keyboard shortcuts to
support users who prefer more automated access to note creation.
One shortcut allows the user to quickly open up the canvas
interface (Figure 2) and add a note for editing. The other shortcut
allows users to only indicate that a screen is relevant and a note is
created in the background, without interrupting the user’s
workflow. The user can later access this note through the sidebar
interface or the main CheatSheet gallery. This might be analogous
to the concept of inserting post-it notes while reading a book, but
not annotating them until after finishing the book.

6.4 Sharing notes and libraries with other web users
To support sharing with people who may not be CheatSheet users,
we added a facility to insert an email address in the sharing field
(Figure 2.5) rather than a username. The recipient will
automatically be sent an email containing a persistent link to an
html page containing the sender’s annotated note. Several steps
can also be shared at once (i.e., as a tutorial) by accessing the
multiple edit feature (Figure 1.3).

7. SECOND USER EVALUATION
To obtain feedback for our second design iteration, we recruited
another 7 participants (2 females) and asked them to complete the
same two tasks using Pixlr and Google SpreadSheets (explained
above). We were mainly interested in understanding participants’
use of our autocreate feature, the new in-application retrieval, and
general feedback.

We found that users were able to quickly grasp the autocreate
feature and started using it in the study tasks. We found that users’
preference for capture based on time interval versus input events
varied depending on context. For example, some users preferred
the time-interval based recording to take notes for their own
retention: “I think when I’m doing things for myself, I would prefer
the auto feature to take a bunch of notes and then I can just keep the
stuff that I want…the 8 second threshold would be enough for me
because for I don’t need every step…I can look at my notes and then
just remember…” (U20).

Another user explained that the time-interval approach may
miss out on minute steps when explaining things to another user,
especially where every mouse click may be significant in a task
sequence: “I often skip stuff when I am explaining something to
someone else; for example, I use keyboard shortcuts in Photoshop, or
might do 3 or 4 things in one step, which makes it really hard to explain
it to other people; this is a huge advantage of auto-capture because I
can’t skip so far ahead…it’ll help me with my pace…and I really like
being able to do this right in place [in the user interface]” (U17).

Other users preferred not to use the autocreate feature at all
because it would generate too many steps for them to curate
afterwards and liked having control over what they could record.
Two of our participants mentioned that they would prefer to use
the keyboard shortcuts to manually choose when to capture useful
screens in the background.

These insights from users provided validation for our revised
design choices to give users more control over choosing whether
to record a single screen, or to record multiple screens in a
sequence based on input events or time intervals, or to record
screens via shortcuts.

In other feedback, participants immediately appreciated the
side-bar overlay that retrieved their past notes automatically when
they visited the same application again. Being able to choose and
rearrange the notes to be displayed in the side bar gave them the
feel of creating a real “cheat sheet” as it encouraged users to be
selective about content they would really need to use.

Finally, the tradeoff of manually capturing and curating notes
upfront versus benefits of refinding relevant content later are best
summed up by this participant’s response: “I usually don’t take notes
because it takes time, but I usually waste a lot of time afterwards [to
refind]. With this [CheatSheet], it makes me spend more time upfront,
but it [will] save me a lot of time later” (U18).

8. DISCUSSION
As we increasingly rely on software applications for our work and
personal activities, fully grasping and retaining knowledge of all the
commands, functions, and features in these applications can be a
challenge. As we discovered in our formative studies, this problem
is particularly acute for the less “tech-savvy” users who are not able
to keep up by relying only on their short-term memory or trial-and-
error. While it is important for us to invent new procedural and
example-driven help resources in HCI, we argue that we also need
to tap into other learning approaches that give users an opportunity
to better manage and reflect on their learning progress.

Using an iterative user-centred design approach, we have
developed CheatSheet, a novel contextual interactive memory aid
that helps users create, organize, and retrieve application-specific
annotations, notes, and screenshots. It also provides an automatic in-
application retrieval interface that allows users to easily refind their
existing notes and annotations. We now discuss some of the

Figure 5: CheatSheet’s template feature for capturing and editing
multiple notes in a task sequence.

implications and limitations of our approach and how they could be
addressed in future work.

First, our current user evaluations were mainly used to inform the
design of CheatSheet, capture initial user reactions, and shed light
on note-taking practices in the context of tracking learning progress.
There are a number of research questions about actual long-term
retention benefits that require larger controlled studies or field
deployments and were beyond the scope of the current paper. There
also are other interesting questions about the note-taking
mechanisms that can provide different learning benefits, as
investigated in other domains: for example, should the interactive
memory aid explicitly require users to add a textual explanation [1]?
Or, should the system monitor users’ activities and nudge them to
generate a particular screenshot or annotation [17]? We plan to
pursue such research questions in future work (and will also make
CheatSheet available to other researchers so that they can
investigate other novel questions using our platform.)

Although we focused on designing CheatSheet as a memory aid,
a surprising side-effect was the positive response to the lightweight
social sharing feature. Users immediately saw the benefit of using it
for quickly generating tutorials or for visually asking for help from
other users. The use of social features is not only useful for
troubleshooting, but can also have potential long-term retention
benefits as learners often understand complex concepts best by
explaining them to others [2]. In future work, we will extend our
designs and prompts to explicitly exploit this learning benefit.

One limitation of CheatSheet’s current design and
implementation is that it only supports web-based applications.
Although the Web is increasingly offering feature-rich complex
applications and a number of applications that we tested with
CheatSheet have desktop counterparts, many widely used complex
applications are still only available on the desktop. In fact, several
of our participants requested a desktop version of CheatSheet. We
believe that adapting the CheatSheet concept for desktop
applications is more of an engineering challenge and that most of
the design goals and ideas that we introduced can be easily adapted.

And finally, although we iterated on our designs multiple times to
facilitate the note-taking process, the main interaction of CheatSheet
still requires explicit manual invocation by the user and interrupts
the current task flow. The other extreme may be to explore purely
automated approaches [e.g.,14] that require little or no user
intervention and still offer useful suggestions to users. We believe
that there is a large open design space to explore more designs
between these extremes and need for more empirical studies to
investigate the specific learning benefits. Our overall aim with
CheatSheet has been to help users who are proactively learning
complex software to be more aware of their learning progress and to
improve access to previously helpful web resources.

REFERENCES
[1] Aleven, V.A. and Koedinger, K.R. 2002. An effective metacognitive

strategy: Learning by doing and explaining with a computer-based
Cognitive Tutor. Cognitive science. 26, 2 (2002), 147–179.

[2] Biswas, G., Leelawong, K., Schwartz, D., Vye, N. and Vanderbilt,
T.T.A.G. at 2005. Learning by teaching: A new agent paradigm for
educational software. Applied AI. 19, 3-4 (2005), 363–392.

[3] Bottoni, P., Civica, R., Levialdi, S., Orso, L., Panizzi, E. and
Trinchese, R. 2004. MADCOW: a multimedia digital annotation
system. Proc AVI, 55–62.

[4] Bransford, J.D., Brown, A.L. and Cocking, R.R. 2000. How people
learn. National Academy Press Washington, DC.

[5] Bruce, H., Jones, W. and Dumais, S. 2004. Keeping and re‐finding
information on the Web: What do people do and what do they need?
Proc ASIS&T, 41, 1 (2004), 129–137.

[6] Chilana, P., Ko, A.J. and Wobbrock, J.O. 2012. LemonAid:
selection-based crowdsourced contextual help for web applications.
Proc CHI, 1549–1558.

[7] Chi, M.T., De Leeuw, N., Chiu, M.-H. and LaVancher, C. 1994.
Eliciting self-explanations improves understanding. Cognitive
science. 18, 3 (1994), 439–477.

[8] Chi, P.-Y., Ahn, S., Ren, A., Dontcheva, M., Li, W. and Hartmann,
B. 2012. Mixt: automatic generation of step-by-step mixed media
tutorials. Proc UIST, 93–102.

[9] Dontcheva, M., Drucker, S.M., Salesin, D. and Cohen, M.F. 2007.
Relations, cards, and search templates: user-guided web data
integration and layout. Proc UIST, 61–70.

[10] Dontcheva, M., Drucker, S.M., Wade, G., Salesin, D. and Cohen,
M.F. 2006. Summarizing personal web browsing sessions. Proc
UIST, 115–124.

[11] Dumais, S., Cutrell, E., Cadiz, J.J., Jancke, G., Sarin, R. and
Robbins, D.C. 2003. Stuff I’ve seen: a system for personal
information retrieval and re-use. Proc SIGIR, 72–79.

[12] Eiriksdottir, E. and Catrambone, R. 2011. Procedural Instructions,
Principles, and Examples How to Structure Instructions for
Procedural Tasks to Enhance Performance, Learning, and Transfer.
J Human Factors &Ergonomics Society. 53, 6 (2011), 749–770.

[13] Fernquist, J., Grossman, T. and Fitzmaurice, G. 2011. Sketch-sketch
revolution: an engaging tutorial system for guided sketching and
application learning. Proc UIST, 373–382.

[14] Fourney, A., Lafreniere, B, Chilana, P and Terry, M 2014.
InterTwine: Creating Interapplication Information Scent to Support
Coordinated Use of Software. Proc UIST (2014).

[15] Grossman, T. and Fitzmaurice, G. 2010. Toolclips: An investigation of
contextual video assistance for functionality understanding. Proc CHI,
1515–1524.

[16] Grossman, Tovi, Matejka, Justin and Fitzmaurice, George 2010.
Chronicle: Capture, Exploration, and Playback of Document
Workflow Histories. Proc UIST.

[17] Hausmann, R.G. and Chi, M.H. 2002. Can a computer interface
support self-explaining. Cognitive Technology. 7, 1 (2002), 4–14.

[18] Hupp, D. and Miller, R.C. 2007. Smart bookmarks: automatic
retroactive macro recording on the Web. Proc UIST, 81–90.

[19] Kawase, R. and Nejdl, W. 2009. A Straightforward Approach for
Online Annotations: SpreadCrumbs-Enhancing and Simplifying
Online Collaboration. WEBIST (2009), 407–410.

[20] Kelleher, C. and Pausch, R. 2005. Stencils-based tutorials: design
and evaluation. Proc CHI, 541–550.

[21] Li, I., Nichols, J., Lau, T., Drews, C. and Cypher, A. 2010. Here’s what
i did: sharing and reusing web activity with ActionShot. Proc CHI,
723–732.

[22] Matejka, J., Grossman, T. and Fitzmaurice, G. 2011. Ambient help.
Proc CHI, 2751–2760.

[23] Matejka, J., Grossman, T. and Fitzmaurice, G. 2011. IP-QAT: in-
product questions, answers, & tips. Proc UIST, 175–184.

[24] Morris, D., Ringel Morris, M. and Venolia, G. 2008. SearchBar: a
search-centric web history for task resumption and information re-
finding. Proc CHI, 1207–1216.

[25] Olsen Jr, D.R., Taufer, T. and Fails, J.A. 2004. ScreenCrayons:
annotating anything. Proc UIST 165–174.

[26] Paivio, A. 1971. Imagery and verbal processes. Holt, Rinehart &
Winston.

[27] Pongnumkul, S., Dontcheva, M., Li, W., Wang, J., Bourdev, L., Avidan,
S. and Cohen, M.F. 2011. Pause-and-play: automatically linking
screencast video tutorials with applications. Proc UIST, 135–144.

[28] Rhodes, B.J. 2000. Margin notes: Building a contextually aware
associative memory. Proc IUI, 219–224.

[29] Robertson, G., Czerwinski, M., Larson, K., Robbins, D.C., Thiel, D.
and Van Dantzich, M. 1998. Data mountain: using spatial memory
for document management. Proc UIST, 153–162.

[30] Won, S.S., Jin, J. and Hong, J.I. 2009. Contextual web history: using
visual and contextual cues to improve web browser history. Proc
CHI, 1457–1466.

